miércoles, 5 de diciembre de 2007

Hackers 1ra Parte


















Espero que estas Notas les sea de gran provecho.

INT

Todos hemos escuchado el término "Hacker" alguna vez, los que contamos con un computador en casa, el sólo hecho de escuchar el término nos asusta, lo relacionamos con virus y espías peligrosos que pueden causar graves daños a nuestro ordenador.

En este informe he querido presentar brevemente la definición de hacker y lo que éste término lleva consigo, que es bastante más de lo que podría imaginar al comenzar esta investigación.

DEFINICIÓN DE HACKER

El término "hacker" provendría de hack, palabra utilizada en EEUU para describir el sonido que hacían los técnicos de las empresas telefónicas al golpear los aparatos para que funcionaran.

También se postula que este término surgió de los programadores del Massachussets Institute of Technology, en los años 60 ya que, por usar hacks (en informática pequeñas modificaciones que se efectúan a un programa o a una máquina para mejorar o alterar su funcionamiento), se hicieron llamar a sí mismos hackers para dejar en claro que podían hacer mejores programas que cualquier otra persona.

Un hacker denominado "sombrero blanco" es un experto en una o varias ramas de la computación y telecomunicación: redes de comunicación, programación, sistemas operativos, hardware. Su función consiste en buscar defectos, puertas traseras y mejorar la seguridad del software, así como prevenir posibles errores futuros.

También existen los llamados hackers "sombreros negros" que utilizan todo el conocimiento que poseen, con fines maliciosos, antimorales o incluso bélicos, como intrusión de redes, acceso ilegal a sistemas gubernamentales, robo de información y muchos más crímenes informaticos.

También es hacker el que distribuye material ilegal o moralmente inaceptable, como fabricación de virus, herramientas de hackeo y elementos de anarquismo como la distribución de manuales para fabricar elementos explosivos caseros o la clásica tortura china, el hacker se distingue del pirata informático por sus valores morales, sociales y políticos que por lo general enfrentados al mundo capitalista

En una línea semejante se encuentran los crackers. Ellos se ocupan de piratear programas, penetrar a sistemas privados y en ocasiones, de destruirlos. Además, se muestra como un grupo experto en la inserción de poderosos virus computacionales en la red, con la idea de sabotear al máximo los grandes sistemas. Como ejemplo, baste decir que en los ochenta una plaga de virus transmitidos por "computólogos" búlgaros a través de discos de software, causó daños en cientos de computadoras personales.

Aunque en muchas ocasiones se piensa que crackers y hackers son lo mismo, en realidad existen ciertas distinciones, aunque resulta difícil dibujar claramente la línea divisoria.

A lo difícil que es diferenciar las actividades de crackers y hackers, muchas veces a éstos últimos se les atribuye actividades delictivas en la red, del robo y/o destrucción de información. Sin embargo, los hackers se han planteado una ética que pretende liberar la información, antes que realizar acciones ilícitas.

El término hacker, en conclusión, se utiliza para identificar a los que únicamente acceden a un sistema protegido como si se tratara de un reto personal, sin intentar causar daños.

LA COMUNIDAD HACKER

La comunidad hacker empieza a formarse a comienzos de los años 60 dentro de los laboratorios de Ciencias de la Computación y de Inteligencia Artificial de las universidades americanas más prestigiosas. Parece ser que los primeros que utilizaron el término hacker en su sentido actual fueron los investigadores del Laboratorio de Inteligencia Artificial del Massachusets Institute of Technology (MIT).

El establecimiento en 1969 de ARPANET --la primera red transcontinental de computadores-- favoreció el rápido desarrollo de la comunidad hacker. Los primeros productos de su folclore --las primeras compilaciones de jerga hacker, los primeros escritos satíricos y las primeras reflexiones acerca de la ética hacker-- se distribuyeron extensamente por ARPANET a comienzos de los años 70. A finales de esa década, los hackers Ken Thompson y Dennis Ritchie desarrollaron el sistema operativo Unix y el lenguaje C. Durante la década de los 80, la comunidad hacker adoptó Unix como su sistema operativo y, aprovechando las capacidades que proporcionaba el nuevo sistema para interconectar computadores, desarrolló una red de computadores, USENET, aún más extensa que la original ARPANET.

USENET, como antes ARPANET, contribuyó decisivamente al desarrollo de la comunidad hacker, al permitir el rápido y fácil intercambio de información, noticias y productos entre sus miembros. Precisamente en uno de los boletines de noticias de USENET, net.unix-wizards, en septiembre de 1983, se anunció bajo el título ``Nueva implementación de Unix'' la primera implementación libre de Unix:

El próximo Día de Acción de Gracias comenzaré a escribir un sistema operativo compatible con Unix denominado GNU (por GNU No es Unix), y lo distribuiré libremente a todo aquel que quiera utilizarlo. Se necesitan colaboradores que dediquen tiempo, dinero, programas y equipos a este proyecto.

El mensaje lo firmaba Richard Stallman, creador del editor de textos EMACS --uno de los favoritos entre los hackers--, y miembro entonces del Laboratorio de Inteligencia Artificial del MIT. Aunque la nueva implementación de Unix anunciada por Stallman no estuvo disponible hasta 1996, sus ideas acerca del carácter no propietario o libre del software configuraron la ideología hacker hasta mediados de los años 90. Para Stallman, software libre significa que el usuario tiene:

  • la libertad para ejecutar el programa con cualquier fin;
  • la libertad para analizar como funciona el programa y adaptarlo a sus necesidades;
  • la libertad para distribuir copias del programa con el fin de ayudar a sus colegas; y
  • la libertad para mejorar el programa y publicar sus resultados de forma que toda la comunidad se pueda beneficiar de sus innovaciones.

A comienzos de los años 90, Linus Torvalds, un estudiante de la Universidad de Helsinki, decidió desarrollar una versión libre de Unix para su computador personal. Como Stallman había hecho en 1983, Torvalds anunció su proyectó utilizando los boletines de noticias de USENET.

Hola a todos los que estáis ahí afuera utilizando minix [una versión simplificada de Unix],
Estoy escribiendo un sistema operativo (libre) --a modo de hobby; para [computadores] clónicos AT 386 (486); no será tan grande ni profesional como GNU. Se está cociendo desde abril, y comienza a estar listo. Me gustaría que me dijerais cosas que a la gente le gusta/disgusta de minix, puesto que mi OS [sistema operativo] de alguna manera se le asemeja (por ejemplo, mantiene, por razones prácticas, el mismo diseño para el sistema de ficheros).

Aunque los primeros computadores personales (PC) se comercializaron en 1975, la comunidad hacker no les prestó atención hasta comienzos de los 90, cuando aparecieron los primeros computadores personales con prestaciones equiparables a las estaciones de trabajo Unix de los años 80, pero a un precio sustancialmente inferior. Sin embargo, faltaba por desarrollar versiones de Unix para los computadores personales a un precio igualmente asequible. La propuesta de Torvalds recibió un apoyo entusiasta dentro de la comunidad hacker y, a finales de 1993, se empezaban a distribuir libremente las primeras versiones de Linux. Desde entonces, el desarrollo de Linux ha venido centrando la actividad de la comunidad hacker.

Por esto se considera a los Hackers creadores de Linux y que sin su cooperación no existirían internet ni World Wide Web.

martes, 4 de diciembre de 2007

Algo sobre la 4G


Telefonía móvil 4G


4G (también conocida como 4-G) son las siglas de la cuarta generación de tecnologías de telefonía móvil. A día de hoy no hay ninguna definición de la 4G, pero podemos resumir en qué consistirá en base a lo ya establecido.

La 4G estará basada totalmente en IP siendo un sistema de sistemas y una red de redes, alcanzándose después de la convergencia entre las redes de cables e inalámbricas así como en ordenadores, dispositivos eléctricos y en tecnologías de la información así como con otras convergencias para proveer velocidades de acceso entre 100 Mbps en movimiento y 1 Gbps en reposo, manteniendo una calidad de servicio (QoS) de punta a punta (end-to-end) de alta seguridad para permitir ofrecer servicios de cualquier clase cualquier momento, en cualquier lugar, con el mínimo coste posible.

El WWRF (Wireless World Research Forum) define 4G como una red que funcione en la tecnología de Internet, combinándola con otros usos y tecnologías tales como Wi-Fi y WiMAX.La 4G no es una tecnología o estándar definido, sino una colección de tecnologías y protocolos para permitir el máximo rendimiento de procesamiento con la red inalámbrica más barata. El IEEE aún no se ha pronunciado designando a la 4G como “más allá de la 3G”.

En Japón ya se está experimentando con las tecnologías de cuarta generación, estando NTT DoCoMo a la vanguardia. Esta empresa realizó las primeras pruebas con un éxito rotundo (alcanzó 100 Mbps a 200 km/h) y espera poder lanzar comercialmente los primeros servicios de 4G en el año 2010. En el resto del mundo se espera una implantación sobre el año 2020 .


El concepto de 4G englobado dentro de ‘Beyond 3-G’ incluye técnicas de avanzado rendimiento radio como MIMO y OFDM. Dos de los términos que definen la evolución de 3G, siguiendo la estandarización del 3GPP, serán LTE (‘Long Term Evolution’) para el acceso radio, y SAE (‘Service Architecture Evolution’) para la parte núcleo de la red. Como características principales tenemos:

- Para el acceso radio abandona el acceso tipo CDMA característico de UMTS

- Uso de SDR (Software Defined Radios) para optimizar el acceso radio

- La red completa prevista es todo-IP

- Las tasas de pico máximas previstas son de 100 Mbps en enlace descendente y 50 Mbps en enlace ascendente (con espectros en ambos sentidos de 20 Mhz)

Los nodos principales dentro de esta implementación son el ‘Evolved Node B’ (BTS evolucionada), y el 'System Access Gateway', que actuará también como interfaz a internet, conectado directamente al Evolved Node B. El servidor RRM será otro componente, utilizado para facilitar la inter-operabilidad con otras tecnologías.

lunes, 3 de diciembre de 2007

Ya en NTT DoCoMo comienzaron las pruebas de Super 3G




El sistema Super 3G es una versión avanzada de HSDPA y HSUPA, evoluciones a su vez de W-CDMA. Entre sus principales ventajas figuran una velocidad de transmisión de datos más elevada, una menor latencia de conexión y mejoras en la eficiencia del espectro.

NTT DoCoMo comenzará con una ensayo indoor para testear la capacidad de transmisión de 3G con el nuevo equipo de pruebas desarrollado. El experimento se centrará en primer lugar en confirmar su comportamiento básico mediante una antena transmisora y una receptora, que funcionan como base y estación móvil, respectivamente.

Una vez hecho esto, la compañía extenderá este proyecto piloto y examinará la tecnología MIMO con la utilización de cuatro antenas, que se utilizarán para alcanzar una velocidad máxima de bajada de 300 Mbps.

Esta tecnología de nueva hornada se suma a otras que ya anticipan la sustitución de 3G, como son LTE (de Ericsson y Siemens, entre otros) o Edge, utilizada esta última por Blackberry (de la empresa RIM) o Apple en su iPhone. El desarrollo comercial de Super 3G se ha fijado para el año 2009.

Por su parte, el organismo 3GPP se encuentra en pleno debate para la estandarización de Super 3G. Se espera que la descripción detallada de las especificaciones esté lista durante este año, bajo el estándar internacional LTE.


jueves, 29 de noviembre de 2007

Tecnologia 3G


Buenas queridos lectores , vamos a hablar un poco sobre la tecnologia 3G la cual considero muchas personas desconocen y deberian conocer , en nuestro pais avanza poco a poco y se mueve muy bien , todavia es un poco costoso para algunos pero vale la pena contratar el servicio.

Pero para contratar un servicio debes saber lo que estas comprando , y aqui te lo dire:

3G (o 3-G) es una abreviatura para tercera-generación de telefonía móvil. Los servicios asociados con la tercera generación proporcionan la posibilidad para transferir tanto voz y datos (una llamada telefónica) y datos no-voz (como la descarga de programas, intercambio de email, y mensajería instantánea).

Inicialmente la instalación de redes 3G fue lenta. Esto se debió a que los operadores requieren adquirir una licencia adicional para un espectro de frecuencias diferente al que era utilizado por las tecnologías anteriores 2G. El primer pais en implementar una red comercial 3G a gran escala fue Japón. En la actualidad, existen 164 redes comerciales en 73 países usando la tecnología WCDMA

Tecnología

Los estándares en 3G utilizan CDMA para compartir el espectro entre usuarios. Se define un ancho de banda mayor, 5 MHz, el cual permite incrementar las velocidades de descarga de datos y el desempeño en general. Aunque inicialmente se especificó una velocidad de 384 kbit/s, La evolución de la tecnología permite ofrecer al suscriptor velocidades de descarga superiores a 3 Mbit/s.

3GPP

3GPP es el acrónimo (en inglés) de "3rd Generation Partnership Project". Esta organización realiza la supervisión del proceso de elaboración de estándares relacionados con 3G.

Estándares en 3G

Las tecnologías de 3G son la respuesta a la especificación IMT-2000 de la Unión Internacional de Telecomunicaciones. En Europa y Japón, se seleccionó el estándar UMTS (Universal Mobile Telephone System), basado en la tecnología W-CDMA. UMTS está gestionado por la organización 3GPP, también responsable de GSM, GPRS y EDGE.

En 3G también está prevista la evolución de redes 2G y 2.5G. GSM y TDMA IS-136 son reemplazadas por UMTS, las redes cdmaOne evolucionan a IS-95.

EvDO es una evolución muy común de redes 2G y 2.5G basadas en CDMA2000

IP EN 3G

IP en 3G, está basado en paquetes, lo cual en términos simples significa que los usuarios pueden estar “en línea” todo el tiempo pero sin tener que pagar hasta que hagan verdaderamente una transmisión de datos.

La naturaleza “sin conexión“ de IP realiza el acceso mucho más rápido ya que la descarga de archivos toma solo unos segundos y nos podemos conectar a nuestra red con solo un clic.

3G tiene soporte de conmutación de paquetes IP y soporte IP para videojuegos, comercio electrónico, video y audio.

Ventajas y desventajas de IP en 3G

Ventajas

IP basado en paquetes, pues solo pagas en función de la descarga lo que supone relativamente un menor costo. Aunque dependiendo del tipo de usuario también se podría calificar como desventaja.

  • Más velocidad de acceso.
  • UMTS, sumado al soporte de protocolo de Internet (IP), se combinan poderosamente para prestar servicios multimedia y nuevas aplicaciones de banda ancha, tales como servicios de video-telefonía y video-conferencia.

Desventajas [

Cobertura limitada.

  • No orientado a conexión. Cada uno de los paquetes pueden seguir rutas distintas entre el origen y el destino, por lo que pueden llegar desordenados o duplicados.

Sin embargo el hecho de no ser orientado a conexión tiene la ventaja de que no se satura la red. Además para elegir la ruta existen algoritmos que "escogen" qué ruta es mejor, estos algoritmos se basan en la calidad del canal, en la velocidad del mismo y, en algunos, oportunidad hasta en 4 factores (todos ellos configurables) para que un paquete "escoja" una ruta.

Evoluciones

3.5G

Evolución de la tecnología 3G usando HSDPA (High Speed Downlink Packet Access) que permite velocidades bajada de hasta 14,4 Mbps.

3.75G

Evolución de la tecnología 3G usando HSUPA (High Speed Uplink Packet Access) que permitirá velocidades subida de hasta 5.8 Mbps. pero solo en 3G

Un Estudio Confirma el Poder del Altruismo en la Wikipedia




La belleza de las aplicaciones de código abierto es que son mejoradas y actualizadas continuamente por aquellos que las utilizan y se preocupan por ellas. Investigadores del Dartmouth College examinaron la enciclopedia online Wikipedia para determinar si los contribuyentes anónimos y poco frecuentes, los "buenos samaritanos", son tan fiables en la calidad de sus colaboraciones como las personas que realizan actualizaciones constantemente y tienen una reputación que mantener.

Sorprendentemente, la respuesta es sí. Los investigadores han descubierto que los buenos samaritanos aportan contenidos de alta calidad, tal como lo hacen los usuarios registrados activos. Los responsables del estudio examinaron autores de Wikipedia y la calidad de los contenidos por ellos generados. Para determinar la calidad se basaron en la cantidad de tiempo transcurrido sin que el texto sufriera correcciones u otras modificaciones, y también en la extensión de las partes modificadas.

"Este descubrimiento fue a la vez innovador e inesperado", explica Denise Anthony, profesora de sociología del Dartmouth College. "En los estudios tradicionales de laboratorio sobre bienes colectivos, nosotros no incluimos a los Buenos Samaritanos, aquellas personas que sólo están de paso y prestan una ayuda puntual, debido a que esos estudios cuidadosamente diseñados no dan cabida a actores externos. Se necesitó una situación de la vida real para reconocer y apreciar las contribuciones de los Buenos Samaritanos al contenido de la Web".

Anthony trabajó con sus colaboradores Sean Smith, profesor de ciencias de la computación, y Tim Williamson. Wikipedia tiene un archivo del historial de cambios y ediciones realizados a sus entradas, lo que permitió a los investigadores analizar el grado de calidad percibida del contenido.

Dividiendo el análisis en la categoría de colaboradores registrados y la de colaboradores anónimos, los investigadores encontraron que entre aquellos que colaboran con frecuencia, los usuarios registrados son más fidedignos. Y descubrieron que entre quienes contribuyen sólo un poco, los usuarios anónimos son más fidedignos. El asombro de los investigadores fue aún mayor cuando constataron que la fiabilidad de las aportaciones de los Buenos Samaritanos fue al menos tan alta como la de las contribuciones de los usuarios registrados de mejor reputación.

Wikipedia es un gran ejemplo de cómo las colaboraciones de código abierto pueden alcanzar un alto nivel de calidad, capaz de satisfacer a los usuarios más exigentes. Y debido a que acoge entradas de cualquier persona, no sólo de programadores y expertos, es una gran herramienta de investigación sobre aspectos de la propia conducta humana, como han comprobado los autores del nuevo estudio.

Wikipedia ahora exige que los colaboradores anónimos que realizan numerosas ediciones deban registrarse.

"Esto probablemente limitará el número de aportaciones de baja calidad hechas por los colaboradores anónimos que participan con gran frecuencia, debido a que al exponer su identidad tendrán que tomar en consideración su reputación", señala Anthony. "No pronostico que esta nueva política vaya a afectar a la calidad de los Buenos Samaritanos, sin embargo. La presencia de estos debe continuar siendo valiosa".

martes, 27 de noviembre de 2007

Con la Tecnología de Invisibilidad en Desarrollo, es Viable Crear un "Agujero Electromagnético de Gusano"


El equipo que creó por primera vez los fundamentos matemáticos que sirven de base a la "capa de invisibilidad" ha demostrado ahora que la misma tecnología pudiera aplicarse para generar un "agujero electromagnético de gusano".

En el estudio, Allan Greenleaf, profesor de matemáticas en la Universidad de Rochester, y sus colaboradores, han planteado una variante del tema del enmascaramiento por invisibilidad. Sus resultados abren la posibilidad de construir un túnel invisible entre dos puntos del espacio.

"Imagine la capa de invisibilidad de Harry Potter alrededor de un tubo", explica Greenleaf. "Si el material se diseña según nuestras especificaciones, usted podría introducir un objeto en un extremo, verlo desaparecer, y, después de que hubiera viajado a lo largo del tubo invisible, verlo reaparecer en el exterior en el otro extremo".

La tecnología actual puede crear objetos que resulten invisibles sólo a la radiación de microondas, pero la teoría matemática permite el efecto del agujero de gusano para las ondas electromagnéticas de todas las frecuencias. Con esto en mente, Greenleaf y sus colaboradores proponen varias posibles aplicaciones. Las cirugías endoscópicas en las que el cirujano se guía por imágenes de MRI son problemáticas porque los intensos campos magnéticos generados por el escáner de MRI afectan a las herramientas del cirujano, y además tales herramientas pueden distorsionar las imágenes de MRI. Sin embargo, haciendo pasar a las herramientas a través de un agujero electromagnético de gusano se las podría esconder eficazmente ante los campos, permitiendo que sólo sus puntas fueran "visibles" durante el trabajo.

Para crear la tecnología de invisibilidad, Greenleaf y sus colaboradores utilizan matemáticas teóricas orientadas a diseñar un dispositivo que guíe las ondas electromagnéticas de una forma útil. Los investigadores podrían emplear entonces estos diseños para crear revestimientos especiales que curven la luz a partir de materiales compuestos denominados metamateriales.

El año pasado, David R. Smith, profesor de ingeniería electrónica y computación de la Universidad Duke, y sus colaboradores, diseñaron un dispositivo de invisibilidad con forma de disco, capaz de hacer que las microondas pasen alrededor de él. Greenleaf y sus colaboradores han empleado ahora una geometría más detallada para especificar exactamente qué propiedades debe poseer el metamaterial de un agujero de gusano para crear el efecto del "túnel invisible". También han calculado qué efectos ópticos adicionales ocurrirían si el interior del agujero de gusano se recubriera con determinados metamateriales hipotéticos.

Asumiendo que su capacidad ocular estuviera limitada a las pocas frecuencias en que opera el agujero de gusano, al mirar por un extremo usted percibiría una visión distorsionada del otro extremo, según las simulaciones hechas por Greenleaf y sus colegas. Dependiendo de la longitud del tubo y de cuán frecuentemente la luz rebotara en su interior, usted simplemente podría ver una imagen circular o de "ojo de pez" del otro extremo, o podría contemplar una impactante perspectiva "imposible" al estilo de los cuadros de Escher.

Otro uso, más lejano en el futuro, sería una pantalla de televisión en 3D. Imagine miles de delgados agujeros de gusano pegados en el exterior de una caja como un largo manojo de hierba en un jarrón. Los propios agujeros de gusano serían invisibles, pero sus extremos podrían transmitir la luz transportada desde debajo. Sería como si miles de píxeles estuvieran simplemente flotando en el aire.

Rompiendo la Barrera de la Resolución Nanométrica en los Rayos X


Un equipo de investigadores del Laboratorio Nacional de Brookhaven ha superado un obstáculo fundamental para usar las lentes refractivas en el enfoque de los rayos X. Este método permitirá un enfoque eficiente de los mismos hasta puntos sumamente pequeños y constituye un descubrimiento importante para el desarrollo de una nueva fuente de luz. La tecnología permitirá lograr avances en la nanociencia, la energía, la biología y la investigación sobre materiales.

Estos científicos excedieron un límite muy importante en la capacidad de enfocar los rayos X "duros" o de alta energía, conocido como el "ángulo crítico".

El ángulo crítico es el ángulo límite al que la luz puede desviarse por medio de una superficie única. Imagine un haz de láser que viaja hacia una lente de vidrio. Dependiendo de las características del material de la lente y el ángulo con que es dirigido el haz, la luz puede refractarse, es decir, transmitirse a través de la lente pero desviada. Sin embargo, cuando este haz de luz se aproxima a la lente con ángulos menores que el ángulo crítico, el haz no pasa a través de la lente sino que en vez de eso se refleja.

El ángulo límite para la desviación determina el tamaño más pequeño de los puntos a los cuales pueden ser enfocados los rayos X. Ello acarrea un problema para los investigadores que utilizan los rayos X para estudiar moléculas, átomos y materiales avanzados a escala nanométrica. Estos objetos tan diminutos requieren de haces finamente enfocados.

Los investigadores han demostrado que el ángulo crítico puede superarse con los rayos X de alta potencia. Gracias a los excelentes recursos del Centro para los Nanomateriales Funcionales del Laboratorio de Brookhaven, y a los de Alcatel-Lucent, pudieron fabricar las lentes especiales con la precisión requerida.

Éste es un paso importante debido a la creciente necesidad de analizar materiales y moléculas mediante rayos X con una alta resolución capaz de llegar a un nanómetro. Esa capacidad se necesita para estudiar los intrincados mecanismos de los sistemas químicos y biológicos.

Sin exceder el ángulo crítico, la resolución de la lente refractiva se limitaría a 24 nanómetros o más. Aunque en este experimento los investigadores sólo han conseguido sobrepasar un poco este límite, han demostrado que puede lograrse. Éste es simplemente el primer paso.

En el futuro, los investigadores continuarán fabricando y probando sistemas ópticos que permitan ir mucho más allá del ángulo crítico y más cerca de esa meta de 1 nanómetro.
Búsqueda personalizada